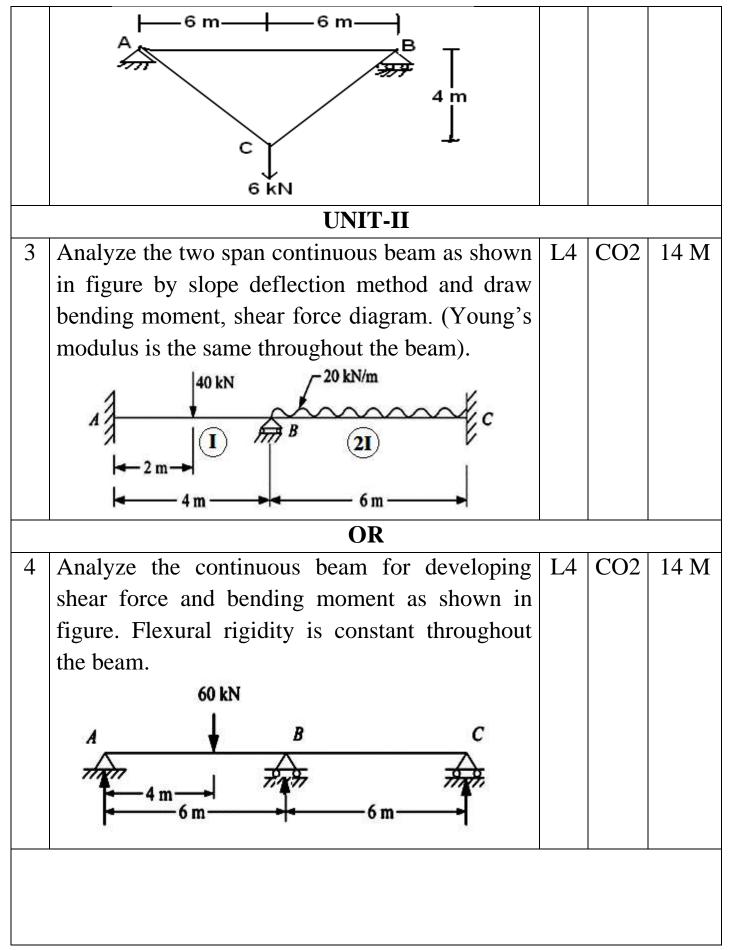
III B.Tech - I Semester – Regular Examinations - DECEMBER 2022

STRUCTURAL ANALYSIS (CIVIL ENGINEERING)

Duration: 3 hours

Max. Marks: 70


Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

		BL	СО	Max.			
				Marks			
UNIT-I							
1	Determine the slope and deflection at the end of	L4	CO1	14 M			
	the beam shown in figure. EI is constant						
	throughout the beam.						
	80 kN 25 kN						
	$\begin{array}{c} A \\ \hline \\$						
OR							
2	Determine the vertical and horizontal	L4	CO1	14 M			
	displacements of the point C of the pin jointed						
	frame shown in figure. The cross sectional area						
	of AB is 125 square mm and of AC and BC are						
	175 square mm each. $E = 2 \times 10^5 \text{ N}$ per square						
	mm.						

UNIT-III						
5	Using moment distribution method, analyze the	L4	CO3	14 M		
	2-span continuous beam ABC, having end					
	supports A and C fixed. There is a load of 5 kN					
	in span $AB = 5$ m at 3 m from A, while on span					
	BC = 5m, there is a load of 8 kN at 2.5 m from					
	C. Sketch the B.M.D					
	OR					
6	Analyze the continuous beam shown in figure by	L4	CO3	14 M		
	Kani's Method. And draw bending moment and					
	shear force diagrams. (E is same throughout)					
	- 30 kN/m 72 kN					
	And B Kr					
	A $(3I)$ $(2I)$ $(-2m)$					
	6 m 6 m 6 m					
	UNIT-IV					
7	A built-up I section has overall depth of 400 mm,	L5	CO4	14 M		
	width of flanges 300 mm, thickness of flanges 50					
	mm and web thickness 30 mm. It is used as a					
	beam with simply supported ends and it deflects					
	by 10 mm when subjected to a load of 40 kN/m					
	length. Find the safe load if this I – section is					
	used as a column with both ends are hinged. Use					
	Euler's formulae. Assume a factor of safety 1.75					
	and take $E = 2 \times 10^5 \text{ N/mm}^2$					
OR						

8	A short column of external diameter 40 cm and	L4	CO4	14 M	
	internal diameter 20 cm carries an eccentric load				
	of 80 kN. Find the greatest eccentricity which the				
	load can have without producing tension on the				
	cross – section.				
	UNIT-V		1 1		
9	A cylindrical shell is 3 m long, and is having 1 m	L4	CO5	14 M	
	internal diameter and 15 mm thickness. Calculate				
	the changes in the dimensions of the shell,				
	i) Change in diameter				
	ii) Change in length				
	iii) Change in volume.				
	If it is subjected to an internal fluid pressure of				
	1.5 N/mm ² . Take $E = 200$ GPa, Poisson's ratio				
	=0.25.				
	OR				
10	A thick pipe of 300 mm outer diameter and 200	L5	CO5	14 M	
	mm internal diameter is subjected to an internal				
	pressure of 12 MPa. What minimum external				
	pressure can be applied so that the tensile stress				
	in the metal shall not exceed 16 MPa? Take				
	E = 200 GPa, Poisson's ratio = 0.25.				